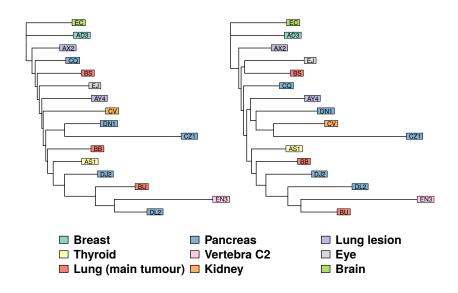
Distances between phylogenetic time trees

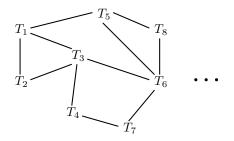
Lena Collienne

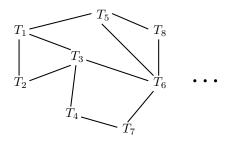
Biological Data Science Lab Department of Computer Science University of Otago

26/11/2021

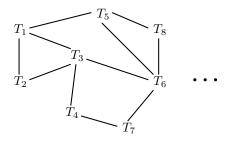
Time trees





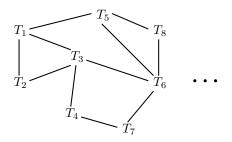


Popular tree re-arrangement operations: $NNI,\,\mathrm{SPR},\,\mathrm{TBR}$



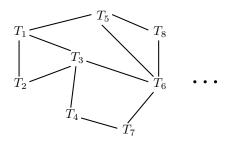
Popular tree re-arrangement operations: NNI, SPR, TBR

Similarity measure



Popular tree re-arrangement operations: NNI, SPR, TBR

- Similarity measure
- ► Tree search algorithms



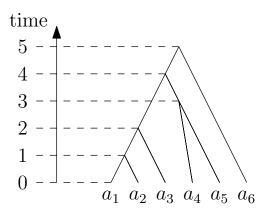
Popular tree re-arrangement operations: NNI, SPR, TBR

- Similarity measure
- ► Tree search algorithms

Problem: Computing distances is \mathcal{NP} -hard

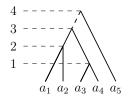
Discretising Time Trees

Ranked trees

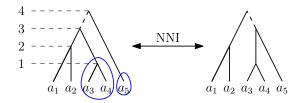


RNNI – Ranked Nearest Neighbour Interchange $_{NNI \ Move}$

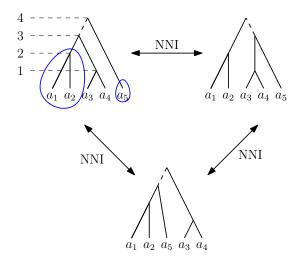
RNNI — Ranked Nearest Neighbour Interchange NNI Move



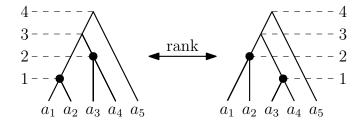
RNNI — Ranked Nearest Neighbour Interchange NNI Move



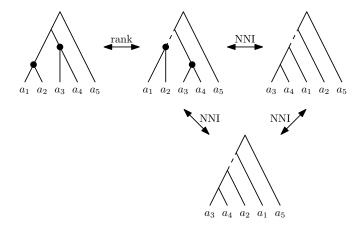
RNNI — Ranked Nearest Neighbour Interchange $_{NNI \ Move}$



RNNI – Ranked Nearest Neighbour Interchange



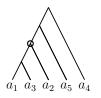
RNNI – Ranked Nearest Neighbour Interchange



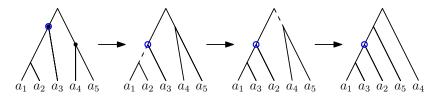
Computing shortest paths

Theorem

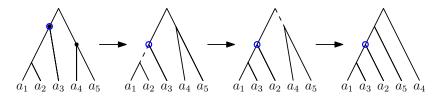
Shortest paths in RNNI can be computed in time $\mathcal{O}(n^2)$.



shared cluster: $\{a_1, a_2, a_3\}$



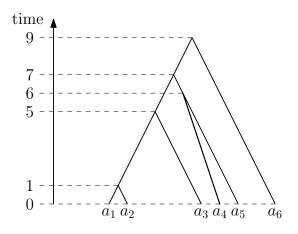
shared cluster: $\{a_1, a_2, a_3\}$



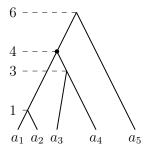
shared cluster: $\{a_1, a_2, a_3\}$

Theorem

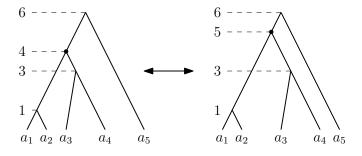
RNNI has the cluster property, i.e. a cluster shared by two trees T and R is present in every tree on every shortest path between T and R.



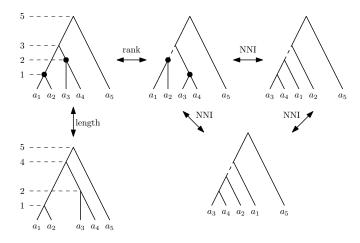
Length moves



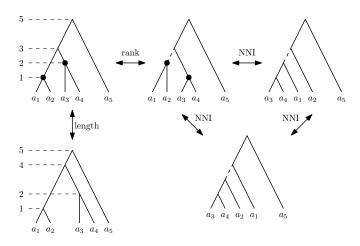
Length moves



DCT_m



 DCT_m



Parameters: n = number of leaves, m = max root time

 DCT_m – The space of discrete coalescent trees

Theorem

Shortest paths in DCT_m can be computed in $\mathcal{O}(nm)$.

 DCT_m – The space of discrete coalescent trees

Theorem

Shortest paths in DCT_m can be computed in $\mathcal{O}(nm)$.

Theorem

 DCT_m has the cluster property.

Thank you

- ► Alex Gavryushkin (University of Otago)
- ► David Bryant (University of Otago)
- ► BioDS lab (University of Otago/Canterbury)