Distances between phylogenetic time trees

Lena Collienne

Biological Data Science Lab Department of Computer Science University of Otago

26/11/2021

Time trees

Popular tree re-arrangement operations: $NNI,\,\mathrm{SPR},\,\mathrm{TBR}$

Popular tree re-arrangement operations: NNI, SPR, TBR

Similarity measure

Popular tree re-arrangement operations: NNI, SPR, TBR

- Similarity measure
- ► Tree search algorithms

Popular tree re-arrangement operations: NNI, SPR, TBR

- Similarity measure
- ► Tree search algorithms

Problem: Computing distances is \mathcal{NP} -hard

Discretising Time Trees

Ranked trees

RNNI – Ranked Nearest Neighbour Interchange $_{NNI \ Move}$

RNNI — Ranked Nearest Neighbour Interchange NNI Move

RNNI — Ranked Nearest Neighbour Interchange NNI Move

RNNI — Ranked Nearest Neighbour Interchange $_{NNI \ Move}$

RNNI – Ranked Nearest Neighbour Interchange

RNNI – Ranked Nearest Neighbour Interchange

Computing shortest paths

Theorem

Shortest paths in RNNI can be computed in time $\mathcal{O}(n^2)$.

shared cluster: $\{a_1, a_2, a_3\}$

shared cluster: $\{a_1, a_2, a_3\}$

shared cluster: $\{a_1, a_2, a_3\}$

Theorem

RNNI has the cluster property, i.e. a cluster shared by two trees T and R is present in every tree on every shortest path between T and R.

Length moves

Length moves

DCT_m

 DCT_m

Parameters: n = number of leaves, m = max root time

 DCT_m – The space of discrete coalescent trees

Theorem

Shortest paths in DCT_m can be computed in $\mathcal{O}(nm)$.

 DCT_m – The space of discrete coalescent trees

Theorem

Shortest paths in DCT_m can be computed in $\mathcal{O}(nm)$.

Theorem

 DCT_m has the cluster property.

Thank you

- ► Alex Gavryushkin (University of Otago)
- ► David Bryant (University of Otago)
- ► BioDS lab (University of Otago/Canterbury)