The Space of Discrete Coalescent Trees

Lena Collienne

Biological Data Science Lab Department of Computer Science University of Otago

30/03/2021

Time Trees

Cancer Phylogenies

Time Trees SARS-CoV-2

.

Tree Inference

Tree Inference

Summarising Trees

What is the mean tree?

Summarising Trees

What is the mean tree?

Problem: In most tree spaces the mean tree is a start tree:

Discrete Tree Spaces

Discrete Tree Spaces

Tree Rearrangement operations: NNI, $\ensuremath{\mathrm{SPR}}$, $\ensuremath{\mathrm{TBR}}$

Phylogenetic Trees

Rooted, binary

${\rm NNI-Nearest\ Neighbour\ Interchange}$

Definition 1

Definition 1

NNI-DIST:

INSTANCE: A pair of trees T and R

FIND: Distance between T and R in NNI

NNI-DIST:

INSTANCE: A pair of trees T and R

FIND: Distance between T and R in $\overline{\mathrm{NNI}}$

ightharpoons \mathcal{NP} -hard

NNI-DIST:

INSTANCE: A pair of trees T and R

FIND: Distance between T and R in NNI

- $\triangleright \mathcal{NP}$ -hard
- ▶ BUT: fixed-parameter tractable (FPT):

distance computable in $\mathcal{O}(2^{\frac{21k}{2}} * n)$ where $d(T, R) \leq k$

NNI-DIST:

INSTANCE: A pair of trees T and R

FIND: Distance between T and R in NNI

- $\triangleright \mathcal{NP}$ -hard
- ▶ BUT: fixed-parameter tractable (FPT): distance computable in $\mathcal{O}(2^{\frac{21k}{2}}*n)$ where $d(T,R) \leq k$
- ▶ Approximation algorithm: ratio $\mathcal{O}(\log(n))$

Biological Interpretability

Cluster Property

Biological Interpretability

Cluster Property

Biological Interpretability

NNI move = NNI move?

Ranked Trees

RNNI

Shortest Path Problem RNNI

RNNI-SP:

INSTANCE: A pair of ranked trees T and R

FIND: Shortest Path between T and R in RNNI

FINDPATH

lacktriangle Greedy algorithm for approximating RNNI-SP

FINDPATH

- ► Greedy algorithm for approximating RNNI-SP
- ▶ Running time $\mathcal{O}(n^2)$

FINDPATH

- ► Greedy algorithm for approximating RNNI-SP
- ▶ Running time $\mathcal{O}(n^2)$
- ▶ Shortest paths for up to 7 leaves

Theorem

FINDPATH computes shortest paths in RNNI.

Theorem

FINDPATH computes shortest paths in RNNI.

Idea for proof

FP(T, R) := path between T and R computed by FINDPATH

Theorem

FINDPATH computes shortest paths in RNNI.

Idea for proof

 $FP(T, R) := path \ between \ T \ and \ R \ computed \ by \ FINDPATH$

Lemma

If for all trees T, R and neighbour T' of T it is

$$|\operatorname{FP}(T',R)| \ge |\operatorname{FP}(T,R)| - 1,$$

then

$$|\mathrm{FP}(T,R)| = d(T,R)$$

for all trees T and R

Length move

Length move

New parameter: $m = \max \text{ height of tree}$

DCT_m

$DCT_{n-1} = RNNI$

FINDPATH in DCT_m $_{m=6}$

FINDPATH in DCT_m m = 6

m = 6

m = 6

FINDPATH in DCT_m $_{m=6}$

FINDPATH in DCT_m $_{m=6}$

m = 6

FINDPATH in DCT_m $_{m=6}$

Theorem

FINDPATH computes shortest paths between discrete coalescent trees T and R in $\emptyset(m^2)$.

Properties of DCT_m

	# Trees	Diameter	Radius
RNNI	$\frac{n!(n-1)!}{2^{n-1}}$	$\binom{n-1}{2}$	$\binom{n-1}{2}$

Properties of DCT_m

	# Trees	Diameter	Radius
RNNI	$\frac{n!(n-1)!}{2^{n-1}}$	$\binom{n-1}{2}$	$\binom{n-1}{2}$
DCT_m	$\frac{n!(n-1)!}{2^{n-1}}\binom{m}{n-1}$	$\binom{n-1}{2} + (m-n+1)(n-1)$?

Cluster Property

Cluster Property

Theorem DCT_m has the cluster property.

Caterpillar Trees

Caterpillar Trees

Caterpillar Trees

Caterpillar Trees

Theorem

The set of caterpillar trees is convex.

Caterpillar Trees

Theorem

The set of caterpillar trees is convex.

Corollary

The distance between caterpillar trees can be computed in $\mathcal{O}(n\sqrt{\log(n)})$.

Solved problems:

Solved problems:

▶ RNNI and DCT_m: shortest paths in $\mathcal{O}(n^2)$!

Solved problems:

- ▶ RNNI and DCT_m: shortest paths in $\mathcal{O}(n^2)$!
- We know diameter, radius, cluster property, convexity of set of caterpillar trees

Solved problems:

- ▶ RNNI and DCT_m: shortest paths in $\mathcal{O}(n^2)$!
- We know diameter, radius, cluster property, convexity of set of caterpillar trees

Solved problems:

- ▶ RNNI and DCT_m: shortest paths in $\mathcal{O}(n^2)$!
- We know diameter, radius, cluster property, convexity of set of caterpillar trees

Open Problems:

Can we compute distances more efficiently?

Solved problems:

- ▶ RNNI and DCT_m: shortest paths in $\mathcal{O}(n^2)$!
- We know diameter, radius, cluster property, convexity of set of caterpillar trees

- Can we compute distances more efficiently?
- ► How can we summarise trees?

Solved problems:

- ▶ RNNI and DCT_m: shortest paths in $\mathcal{O}(n^2)$!
- We know diameter, radius, cluster property, convexity of set of caterpillar trees

- Can we compute distances more efficiently?
- ► How can we summarise trees?
- Does this help us doing statistics in tree space? Confidence intervals?

Solved problems:

- ▶ RNNI and DCT_m: shortest paths in $\mathcal{O}(n^2)$!
- We know diameter, radius, cluster property, convexity of set of caterpillar trees

- Can we compute distances more efficiently?
- ► How can we summarise trees?
- Does this help us doing statistics in tree space? Confidence intervals?

Thank you

- ► Alex Gavryushkin (University of Otago)
- ► David Bryant (University of Otago)
- ▶ BioDS Lab:

