

Lena Collienne

Ernst-Moritz-Arndt-Universität Greifswald

09.08.2017

Table of contents

- 1. Motivation
- 2. Phylogenetic trees
 - Time-trees
 - Discrete time-trees

3. Hierarchy of discrete time-trees

- Nearest Neighbour Interchange
- DtT_m
- Event intervals
- Rank swap
- Length move
- Summary
- 4. RNNI
 - Definition
 - Complexity
 - Split Theorem
- 5. Summary

Motivation

time-trees: branch length $\widehat{=}$ time

discrete time-trees: branch lengths are non-negative integers

Motivation

time-trees: branch length $\hat{=}$ time

discrete time-trees: branch lengths are non-negative integers

Why this discretization?

- \rightarrow Generalization of NNI \Rightarrow approximation algorithms?
- \rightarrow Understanding behaviour of MCMC on time-trees

Figure: Phylogenetic tree on set $S = \{1, \ldots, 6\}$

Definition

A rooted phylogenetic tree \mathcal{T} on a set S is a pair (T, Φ) , where T is a rooted binary tree and Φ is a bijective map from S to the leaf set of T.

Phylogenetic trees

Time-trees

Definition

A *time-tree* is a rooted phylogenetic tree where each node is assigned a non-negative real number (time/divergence date). Each node has a smaller time than its parent.

Phylogenetic trees

Discrete time-trees

Definition

A *discrete time-tree* is a time-tree where all assigned times are distinct and from the set of non-negative integers.

Definition

An *ultrametric* discrete time tree is a discrete time tree where all leaves have the same time.

Figure: Ultrametric discrete time tree

Definition

The *rank* of a node is the number of nodes in the tree with strictly smaller time.

Figure: Ultrametric discrete time tree with ranks

Definition

A pair of nodes v_1, v_2 in a tree is called *event interval* if $|rank(v_1) - rank(v_2)| = 1$

Figure: u, v and v, w are event intervals, u, w not

Nearest Neighbour Interchange

The NNI graph builds the bottom level of our hierarchy:

Definition

Two discrete time-trees T and R are NNI neighbours, if there exist edges e in T and f in R such that:

- both edges are not adjacent to a leaf and
- the graph obtained from \mathcal{T} by shrinking e to a vertex is isomorphic to the graph obtained from \mathcal{R} by shrinking f.

Figure: All possible NNI moves on the interval I

Nearest Neighbour Interchange

Definition

The graph G = (V, E) with:

- V := set of discrete time-trees on n leaves
- $E := \{(u, v) | u \text{ and } v \text{ are NNI neighbours} \}$

is called NNI graph. We denote this graph by DtT_0 .

DtT_{m}

The level m > 0 of our hierarchy:

Definition

The graph $DtT_m = (V, E)$ is defined as follows:

V := set of discrete time-tree \mathcal{T} on n leaves with event intervals of length $\leq m$ There is an edge between two trees \mathcal{T}, \mathcal{R} , if:

- they are NNI neighbours
- there are two vertices u, v which swap their ranks
- there is a length move between ${\mathcal T}$ and ${\mathcal R}$

 $\frac{4}{3}$

Figure: A rank swap of the two nodes

Figure: Length and NNI moves on the event interval I

Summary

09.08.2017 Lena Collienne (Uni Greifswald) : Discrete time-trees

Definition

Definition

The ${\rm RNNI}$ graph is the graph ${\rm DtT}_1$

RNNI Definition

Definition

The RNNI graph is the graph DtT_1

 \Rightarrow There are only rank and $\rm NNI$ moves in the $\rm RNNI$ graph Now: $\rm RNNI$ on ultrametric trees

RNNI Complexity

Theorem

It is NP-hard to compute NNI distances.

Is computing RNNI distances NP-hard, too?

Complexity

In general:

Theorem

The set of caterpillar trees is convex in the RNNI space.

Complexity

In general:

Theorem

The set of caterpillar trees is convex in the RNNI space.

 \Rightarrow The proof of the $\rm NP-hardness$ of $\rm NNI$ can't be used for $\rm RNNI$

RNNI Split Theorem

Figure: The edge e leads to the split BE|ACD

Conjecture (Split Theorem)

In RNNI it holds: If a split given by an edge is present in two trees T and R then this split is present in every tree on every shortest path from T to R.

Split Theorem

RNNI

The Split Theorem is not true for NNI:

Figure: Split present in T and \mathcal{R} : 12...n|n + 1...2n

y

Theorem

Let x and y be trees and N(x) the 1-RNNI-neighbourhood of x. Then the following statement holds for the RNNI space: $|\{u \in N(x) : d(u, y) \le d(x, y)\}| \le 3 * d(x, y)$

Theorem

Let x be a caterpillar tree, y a caterpillar depth p tree and N(x) the 1-RNNI-neighbourhood of x. Then the following statement holds for the RNNI space:

 $|\{u \in N(x) : d(u, y) \le d(x, y)\}| \le 3 * d(x, y)$

Figure: A caterpillar depth 3 tree

Main idea for the proof: differ between topologies and distances to y Topologies:

- Same topology as *x* (caterpillar)
- One additional cherry

Distances to y:

- d(u, y) = d(x, y) 1
- d(u, y) = d(x, y)

Figure: Caterpillar tree with additional cherry

Lemma

The number of caterpillar trees u in N(x) with d(u, y) = d(x, y) equals the number of caterpillar trees with an additional cherry in N(x) and distance d(x, y) - 1 to y.

Figure: $d(x, y) = d(u, y) \Rightarrow d(v, y) = d(x, y) - 1$

Lemma

The number of caterpillar trees with an additional cherry u in N(x) with d(u, y) = d(x, y) equals the number of caterpillar trees in N(x) with distance d(x, y) - 1 to y.

Figure: $d(x,y) = d(u,y) \Rightarrow d(v,y) = d(x,y) - 1$

Proof.

We want: $|\{u \in N(x) : d(u, y) \le d(x, y)\}| \le 3 * d(x, y)$

1. Trees $u \in N(x)$ with additional cherry and d(u, y) = d(x, y) - 1 \rightarrow For each of the *p* caterpillar subtrees of size s_p there might be $s_p - 1$ cherries built new $\Rightarrow \sum (s_p - 1)$

Proof.

- 2. Caterpillar trees $u \in N(x)$ with d(u, y) = d(x, y) 1
 - \rightarrow For each caterpillar subtree there are $s_p-1~{\rm RNNI-moves}$ necessary to build that subtree

$$\Rightarrow d(x,y) - \sum (s_p - 1)$$

⇒ In total: $2 * \sum (s_p - 1) + 2 * (d(x, y) - \sum (s_p - 1)) = 2d(x, y)$? No: The running index of both sums may differ. ⇒ case-by-case analysis depending on the positions of cherry taxa of *x* in *y*.

Conluding we have:

- · A hierarchy on discrete time-trees
- The RNNI graph as one level:
 - \rightarrow Set of caterpillars is convex
 - \rightarrow Some knowledge about neighbourhoods

Conluding we have:

- · A hierarchy on discrete time-trees
- The RNNI graph as one level:
 - \rightarrow Set of caterpillars is convex
 - \rightarrow Some knowledge about neighbourhoods

Next steps:

- Prove the Split Theorem
- Curvature of RNNI graph \rightarrow MCMC