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time-trees: branch length = time
discrete time-trees: branch lengths are non-negative integers

Time
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time-trees: branch length = time
discrete time-trees: branch lengths are non-negative integers

Time

A

Why this discretization?
— Generalization of NNI = approximation algorithms?
— Understanding behaviour of MCMC on time-trees
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1 2 3 4 5 6

Figure: Phylogenetic tree on set S = {1,...,6}

Definition
A rooted phylogenetic tree T on a set S is a pair (', ®), where T'is a
rooted binary tree and @ is a bijective map from S to the leaf set of T'.
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Time-trees

A time

DO (@8} W~
1

Definition

A time-tree is a rooted phylogenetic tree where each node is
assigned a non-negative real number (time/divergence date). Each
node has a smaller time than its parent.
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Discrete time-trees

Time

Definition
A discrete time-tree is a time-tree where all assigned times are
distinct and from the set of non-negative integers.
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Discrete time-trees

Definition
An ultrametric discrete time tree is a discrete time tree where all
leaves have the same time.

A B CD E F

Figure: Ultrametric discrete time tree
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Discrete time-trees

Definition
The rank of a node is the number of nodes in the tree with strictly
smaller time.

A B CD E F

Figure: Ultrametric discrete time tree with ranks
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Discrete time-trees

Definition
A pair of nodes vy, vy in a tree is called event interval if
|rank(vy) — rank(ve)| = 1

Figure: u,v and v, w are event intervals, u, w not
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Nearest Neighbour Interchange

The NNI graph builds the bottom level of our hierarchy:

Definition
Two discrete time-trees 7 and R are NNI neighbours, if there exist
edges e in 7 and f in R such that:

* both edges are not adjacent to a leaf and

* the graph obtained from 7" by shrinking e to a vertex is
isomorphic to the graph obtained from R by shrinking f.
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Nearest Neighbour Interchange

A B C D E A B C D E

N /

B A C D E

Figure: All possible NNI moves on the interval I
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Nearest Neighbour Interchange

Definition
The graph G = (V, E) with:
* IV .= set of discrete time-trees on n leaves
* FE:={(u,v)| vand v are NNI neighbours}
is called NNI graph. We denote this graph by DtTj.
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The level m > 0 of our hierarchy:

Definition

The graph DtT,,, = (V, E) is defined as follows:

V .= set of discrete time-tree 7 on n leaves with event intervals of
length < m There is an edge between two trees 7, R, if:

* they are NNI neighbours
* there are two vertices u, v which swap their ranks
* there is a length move between 7 and R
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Event intervals
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Rank swap

A B C D E A B C D E

Figure: A rank swap of the two nodes
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Length move

09.08.2017 Lena Collienne (Uni Greifswald) : Discrete time-trees



Hierarchy of discrete time-trees  ,yuesiir enerowas )

Summary
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Definition

Definition
The RNNI graph is the graph DtT,
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Definition

Definition
The RNNI graph is the graph DtT,

= There are only rank and NNI moves in the RNNI graph
Now: RNNI on ultrametric trees

B C D E B C D E

NN;\. / NNI

B A C D E
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Complexity

Theorem
It is NP-hard to compute NNI distances.

@ R
A %
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Complexity

Is computing RNNI distances NP-hard, too?

3 x NNI
_—
NNI NNI
1234567 1456237

3 x RNNI A& 3 x RNNI

1245637
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Complexity
In general:

Theorem
The set of caterpillar trees is convex in the RNNI space.
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Complexity
In general:

Theorem
The set of caterpillar trees is convex in the RNNI space.

= The proof of the NP—hardness of NNI can’t be used for RNNI
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Split Theorem

B A C D E

Figure: The edge e leads to the split BE|ACD

Conjecture (Split Theorem)
In RNNI it holds:

If a split given by an edge is present in two trees T and R then this
split is present in every tree on every shortest path from T to R.
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Split Theorem
The Split Theorem is not true for NNT:
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Figure: Split presentin 7 and R: 12..n|n + 1...2n
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Theorem

Let xz and y be trees and N (x) the 1-RNNI-neighbourhood of =. Then
the following statement holds for the RNNI space:
{u € N(z) : d(u,y) < d(z,9)}| < 3d(z,y)

u
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Theorem

Let = be a caterpillar tree, y a caterpillar depth p tree and N (z) the
1-RNNI-neighbourhood of x. Then the following statement holds for
the RNNI space:

{u e N(z) : d(u,y) < d(z,y)}| < 3x+d(z,y)

Figure: A caterpillar depth 3 tree
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Main idea for the proof: differ between topologies and distances to y
Topologies:

* Same topology as x
(caterpillar)
* One additional cherry

Distances to y: Figure: Caterpillar tree with additional

* d(u,y) =d(z,y) — 1 cherry
* d(u,y) = d(z,y)
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Lemma

The number of caterpillar trees w in N (z) with d(u,y) = d(z,y) equals
the number of caterpillar trees with an additional cherry in N (z) and
distance d(x,y) — 1 to y.
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Figure: d(l’,y) = d(ua y) = d(’U,y) = d(l'vy) -1
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Lemma

The number of caterpillar trees with an additional cherry u in N (x)
with d(u,y) = d(x,y) equals the number of caterpillar trees in N (x)
with distance d(z,y) — 1 to y.
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Figure: d(z,y) = d(u,y) = d(v,y) = d(z,y) — 1

Collienne Greifswald) : Discrete time-trees



m UNIVERSITAT GREIFSWALD > s(:‘ 456

Proof.
We want: [{u € N(z) : d(u,y) < d(z,y)}| < 3xd(x,y)
1. Trees u € N(x) with additional cherry and d(u,y) = d(z,y) — 1

— For each of the p caterpillar subtrees of size s, there might be
sp — 1 cherries built new

=>.(sp—1)
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Proof.
2. Caterpillar trees v € N(x) with d(u,y) = d(z,y) — 1
— For each caterpillar subtree there are s, — 1 RNNI—-moves
necessary to build that subtree

= d(x,y) =2 (sp — 1)

= Intotal: 2% ) (sp — 1) +2x (d(z,y) — > (sp — 1)) = 2d(z,y)?
No: The running index of both sums may differ.

= case-by-case analysis depending on the positions of cherry taxa
of z in y.

O]
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Conluding we have:
* A hierarchy on discrete time-trees

* The RNNI graph as one level:
— Set of caterpillars is convex
— Some knowledge about neighbourhoods
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Conluding we have:
* A hierarchy on discrete time-trees

* The RNNI graph as one level:
— Set of caterpillars is convex
— Some knowledge about neighbourhoods
Next steps:
* Prove the Split Theorem

* Curvature of RNNI graph — MCMC
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